Non-destructive and Microanalytical Techniques in Art and Cultural Heritage Chromatography & Mass spectrometry (GC, HPLC) Section Athens, 27 - 30 April # TD/CGC/MS and FT-IR characterization of archaeological amber artefacts from Romanian collections (Roman age) M. Virgolici^{1*}, I. Petroviciu², E. D. Teodor³, S. C. Litescu³, M. M. Manea¹, A. Medvedovici⁴, C. C. Ponta¹ ¹IRASM Irradiation Technology Center, "Horia Hulubei" National Institute for Physics and Nuclear Engineering, 407 Atomistilor Str., 077125, Com. Magurele, Ilfov County, Romania, mvirgolici@nipne.ro, m_virgolici@irasm.ro ²National Research Institute for Conservation and Restoration, Calea Victoriei 12, 030026, Bucharest, Romania ³National Institute for Biological Sciences, Centre of Bioanalysis, 296 Spl. Independentei, 060031, Bucharest, Romania ⁴Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, 90-92 Panduri Str., 050663, Bucharest, Romania ### INTRODUCTION Romanian museums preserve a large number of archaeological amber collections. Considering that Romanian amber (Rumanite) has been known for a long time it is of great interest to find out if the fossil resin used in these objects is of Romanian or Baltic origin. Despite the fact that Rumanite keeps the attention of Romanian geologists, it remained poorly characterized in what physical and chemical methods are concerned. Recently, within ROMANIT - a project developed at the national level and coordinated by Romanian National History Museum (MNIR), a multidisciplinary team was involved in the characterization of fossil resins with a particular focus on romanian amber (Rumanite). The project aims to establish certain methods to be used to characterized differentiate Romanian from Baltic amber. The analytical techniques considered include TD/CGC/MS (thermal desorbtion / capillary gas chromatography / mass spectrometry) and Fourier Transform Infrared Spectroscopy, in transmission and variable angle reflectance (FTIR-VAR). ### **EXPERIMENTAL** ### Consideration on the methods used Consideration on the methods used Direct thermal desorbtion coupled with GC-MS was used to extract, concentrate and identify volatile compounds from amber in one single automated analysis. A chromatographic method together with a specific data analysis method based entirely on AMDIS software (figure 1) were developed for semi-quantitative and qualitative identification of biomarkers specific to amber specimens. Results showed some hundreds of volatile organic compounds, part of them previously found by other laboratories specialized in characterization of fossil resins and many without an assigned chemical structure. A mass spectra database, available on the project website, was created for all characterized volatiles. Full mass spectra of the developed database are currently being processed to be included in future versions of MaSC database (www.masc.org). Results evidenced marker compounds for both Battic and Rumanite amber, which may be used to differentiate the two fossil resins from each other. A detailed description of the method was presented at the MASC Meeting in London, [Virgolici & al 2009]. Already a well established and practical technique for the structural characterisation and discrimination between amber types [Beck 1964/86, Thickett 1995, Angelini 2005, culiano 2006], infrared spectroscopy was used complementary to TD/CGC/MS. According to FTIR, Battic amber (succinite) could be identified among other fossil resins by a single carbon-coxygen deformation band near 1150 cm², which is preceded by a broad shoulder between 1250 and 1175 cm². This characteristic galattic shoulder' is perfectly horizontal in well preserved succinite but assumes an increasly negative slope in samples that have been subject to atmospheric oxidation. It is not found in any non-Baltic fossil resins, including those containing succinic have been subject to atmospheric oxidation. It is not found in any non-Baltic fossil resins, including those containing succinic inave Deer subject, to demospheric voluntaries in the learning of the method was used for controlled origin ambers and conjugacing that within FTIR/ trans sample withdrawal is compulsory, the method was used for controlled origin ambers and only occasionally for archaeological artifacts (when samples of ~ 1 mg were available). FTIR - VAR was suitable for small objects for which in situ analysis was possible, according to the instrument features. Samples (controlled origin and archaeological amber) Controlled origin amber samples (Baltic and Rumanite) were available from deposits, private and museum collections while the archaeological amber objects studied belong to several Romanian museum collections. According to art historians and archaeologists the objects belong to the Roman era. Saniple preparation For TDICGC/MS analysis, 10 mg of powder was packed with silanized glass wool plugs and 10 µl of methanolic solution with 0.005% chrysene were injected through the back of the tube as internal standard. FT-IR samples about 1 mg were embedded in potassium bromide (1:10 w/w), pressed in a 3 mm diameter pellet and analyzed in transmission. For FTIR-VAR samples vere fixed on a gold mirror without any pre-treatment. Instrumentation Markes "UNITY" Thermal Desorber equipped with a General Purpose Hydrophobic Trap was used for direct TD at 200 °C for extraction of volatile compounds (VCs) trapped in fossil resin matrix. An Agilent GC 6890N equipped with a 25 m x 0.25 mm HP-5ms column was used. The initial oven temperature of 40 °C was ramped at rate of 2 °C min¹ to 250 °C and then held constant. MS detection was made with Agilent 5975 inert MSD in fragmentation mode by electron ionization at 70 °C vI, data acquisition in SCAN mode 35 - 700 amu. The optimal thermal desorbtion temperature was established by thermal analysis (figure 2). All FT-IR spectra were collected on a Bruker Tensor 27 and analyzed at a 4 cm⁻¹ spectral resolution Figure 1. TD/CGC/MS data analysis workflow ## **RESULTS** Using in-house databases of VCs detected in controlled geological origin ambers, archaeological samples were screened for the biological markers which could be correlated with geological origin. Extracted Ion Chromatograms (EIC) of specific fragment ions for the most characteristic VCs were taken into consideration for discrimination between Rumanite and Baltic fragment ions for the most characteristic VCs were taken into consideration for discrimination between Rumanite and Baltic ambers. EliC fingerprints were named features (figures 3 and 4). The occurrence of characteristic VCs was further correlated with the "Baltic shoulder" presence (1250-1175 cm*) in the FT-IR spectra (Figure 5). These criteria, applied to archaeological amber from the Roman age, are summarized in Table 1. It should be mentioned that table one contains only the samples available for TD/GC/MS analysis, many others being tested only with spectroscopic techniques. From 17 available objects a clear result was obtained in about half of them while in about half of the rest attribution to Rumanite was not possible due to the lack of characteristic 'features' according to TGC/G/MS. It is hould be also mentioned that even in-situ analysis by FT/RVAR was available, measurements on this technique sonly possible for small objects (2-3 cm in diameter) due to the instrument configuration. We should also consider the difficulties of analysis when archaeological objects are concerned: previous treatment, storage conditions and even sample availability may also affect the quality of the obtained results Figure 3. The most characteristic TD/GC/MS EIC features for Rumanite Table 1. Comparative results of TD/GC/MS with FT-IR spectroscopic techniques and archaeological material classification | Object
ID | Provenience | Sample
ID | TD/CGC/MS | Characteristic features for B/R
ambers according to FTIR | | B/R | |--------------|---------------------------------|--------------------|-----------|---|-----|--------| | | | | | trans | VAR | 501000 | | 72 | Izoare NT | 434-437 | ? | R | - | R | | 16 | Izvoru GR | 260 | В | - | - | В | | 85 | Harsova | 439 | ? | R | :- | R | | 83 | Harsova | 440-441 | = | R | - | R | | 254 | Tulcea | 566-571 | В | R? | 55 | ? | | 251 | Isaccea | 572-574 | В | ? | - | В | | 255 | Piatra Frecatei | 576-577 | В | ? | = | B? | | 260 | Piatra Frecatei | 583-584 | ? | R | 10 | R | | 262 | Piatra Frecatei | 589 | ? | | (2) | ? | | 263 | Archaeological Museum Mangalia | 633-635 | ? | R | 15 | R | | 265 | Mangalia | 638,642 | ? | R | - | R | | 267 | Archaeological Museum Constanta | 646-648 | ? | R? | 1= | R? | | 271 | Archaeological Museum Mangalia | 651-652 | ? | ? | 10 | ? | | 279 | Piatra Frecatei | 709-710
692-693 | ? | R? | ю | R? | | 282 | Piatra Frecatei | 712-713
674-679 | В | В | B? | В | | 283 | Piatra Frecatei | 715-717 | ? | R | R | R | | 273 | Mangalia | 722,723,726 | В | В | В | В | Figure 5. FT-IR spectra of Baltic amber (left) and Rumanite (right). Note: According to Beck, Baltic amber presents a horizontal shoulde at 1250-1160cm-1 followed by a strong signal at 1157 cm-1 [Beck 1986]. Rumanite is characterised by a strong signal at 1241 cm-1 [Angelini 2005] ### CONCLUSIONS TD/CGC/MS and FTIR techniques have good potential for identification of Rumanite and Baltic amber in archaeological artifacts. As in earlier publications, even if some analytical criteria to differentiate Romanian from Baltic amber were established, their use on archaeological amber artifacts may not be always successful. This may be due to chemical degradation in archaeological material and the restrictions imposed when historical objects are concerned (in situ analysis, amount of sample available, the measure the available sample is representative to the whole object). Further studies to establish the limits of TD/CGC/MS and FTIR as well as development of new analytical techniques would be worthwhile for unambiguous attribution of archaeological amber artifacts geological origin. # REFERENCES [1] Stout, E.C., Beck C. W., Anderson K. B.: Identification of Rumanite (Romanian Amber) as thermally altered succinite, Phys. Chem. Minerals, 27 (2000) 665-678. Phys. Chem. Minerals, 27 (2000) 665-678. [2] Thickett D. & all The Conservation of Amber, Studies in Conservation 40 (1995) 217-226. [3] Angelini, I., Bellintani P., Archaeological ambers from Northern Italy: an FTIR-DRIFT study of provenance by comparison with the geological amber database, Archaeometry 47 (2005) 441-454. [4] Beck C. W., Spectroscopic Investigations of Amber, Applied Spectroscopy Reviews, 22:1 (1986) 57-110. [5] Guillano M. et all., Applications of diamond crystal ATR FTIR spectroscopy to the characterization of ambers, Spectroschemica Acta A Mol. Biomol. Spectrosc. 67 (2006) 1407-1411 [6] Virgolici M. et all., Application of TDICGC/MS and FT-IR in chemical characterization of Romanian amber, the 4th MASC (Mass Spectrometry and Chromatography) Meeting, London 2009 # **ACKNOWLEDGEMENTS** Authors are gratefully to CNMP Romania for financial support in the frame of grant no. 91-019/2007, ROMANIT research project entitled "Prestige and Power. Romanian Museums" Antique Items of Trade. Non-metallic adornments, with an archaeometrical study regarding the origin of amber beads " (http://www.romanit.ro). We would also like to thank the Romanian museums who provided us access to their collections.